
MATH2050B 1920 Midterm
TA’s solutions1 to selected problems

Q1. State (without proof) the following results:

(i) Characterization Theorem for intervals

(ii) Nested Interval Theorem

(iii) Bolzano-Weierstrass Theorem

Solution.

(i) A subset I ⊂ R is an interval iff for any a, b ∈ I, whenever a < x < b then x ∈ I.

(ii) Let (In)∞n=1 be a sequence of decreasing closed and bounded intervals, i.e. ∀n, In =
[an, bn], an, bn ∈ R and I1 ⊃ I2 ⊃ . . . . Then ∩∞n=1In 6= ∅.

Moreover if limn→∞ an = limn→∞ bn, then ∩∞n=1In = {ξ} (contains one and only one
element)

(iii) Any bounded sequence of real numbers has a convergent subsequence.

Q2. Using Q1(iii) or other methods, prove the Cauchy criterion (if and only if) result for
sequences.

Solution. Cauchy criterion. A sequence of real numbers (xn)∞n=1 is convergent iff it is
Cauchy.

First, we prove that if (xn)∞n=1 is convergent then it is Cauchy. Let ε > 0. Suppose limn→∞ xn =
L. Then there is N s.t. |xn − L| < ε

2 for all n > N . Then for all m,n > N , |xm − xn| ≤
|xm − L|+ |L− xn| < ε.

Second, we prove that if (xn)∞n=1 is Cauchy then it is convergent. To use BW Theorem we need
to show that (xn)∞n=1 is bounded.

Consider ε0 = 1. By Cauchy condition there is N s.t. |xn − xm| < 1 = ε0 for all m,n > N . In
particualr, |xn − xN+1| < 1 for all n > N . Thus |xn| < |xN+1| + 1 for all n > N . Therefore
(xn)∞n=1 is bounded by max{|x1|, |x2|, . . . , |xN |, |xN+1|+ 1}.

By BW Theorem, (xn)∞n=1 has a convergent subsequence (xnk
)∞k=1, say limk→∞ xnk

= L. It
remains to show limn→∞ xn = L.

Let ε > 0.

• By Cauchy condition, there is M1 ∈ N s.t. |xm − xn| < ε
2 for all n,m ≥M1.

• By convergence of (xnk
)∞k=1, there is M2 ∈ N s.t. |xnk

− L| < ε
2 for all k ≥M2.

1please kindly send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.
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Let M = max(M1,M2). For any n > M ,

|xn − L| ≤ |xn − xnM2
|+ |xnM2

− L| < ε.

Q3. For a real-valued function f on a set of real numbers, give the definition and its negation
for each of the following:

(i) f is continuous at a point (say u) in A

(ii) f uniformly continuous on A

Solution.

(i) (Definition) f is continuous at u ∈ A iff for any ε > 0, there is δ > 0 s.t. for all
x ∈ Vδ(u) ∩A, |f(x)− f(u)| < ε.

(Negation) f is not continuous at u ∈ A iff there is ε > 0 s.t. for any δ > 0, there is
x ∈ Vδ(u) ∩A with |f(x)− f(u)| ≥ ε.

(ii) (Definition) f is uniformly continuous on A iff for any ε > 0, there is δ > 0 s.t. for all
x, y ∈ A with |x− y| < δ, |f(x)− f(y)| < ε.

(Negation) f is not uniformly continuous on A iff there is ε > 0 s.t. for any δ > 0, there
are x, y ∈ A with |x− y| < δ and |f(x)− f(y)| ≥ ε.

Q4. Let f(x) = x2, ∀x ∈ R. Show that f is continuous at each point of R and that is is not
uniformly continuous.

Solution. The identity function g(x) = x is continuous on R, so product of continuous functions
f = g2 is continuous on R.

To show that f is not uniformly continuous on R, we use the negation stated as in Q3 (ii).

Consider ε = 1. For any δ > 0, we want to find x, y ∈ R, |x− y| < δ and |f(x)− f(y)| ≥ 1.

Note that there exists n ∈ N s.t. δn > 1. Now, the two real numbers n, n + δ
2 is of distance

< δ, and

|f(n)− f(n+
δ

2
)| = δn+

δ2

4
> 1

Hence f is not uniformly continuous on R.

Q5. In ε-δ terminology, show:

(i) limx→4
x2+1
x−3 = 17

(ii) limx→2+
x
x−2 = +∞, (x > 2)

(iii) If f : R→ R \ {0} is continuous then 1
f is continuous.

(iv) If f, g : R→ R continuous then f ◦g is continuous on R, where (f ◦g)(t) = f(g(t)), ∀t ∈ R
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Solution. (i) : Note |x2+1
x−3 − 17| = | (x−4)(x−13)x−3 |. If 0 < |x − 4| < 1

2 , then |x − 3| > 1
2 and

|x− 13| < 17
2 .

Let ε > 0. Take δ = min(12 ,
ε
17). For any 0 < |x− 4| < δ, we have

|x
2 + 1

x− 3
− 17| = |(x− 4)(x− 13)

x− 3
| < ε.

(ii) : Let M ∈ R. We need to show that there is δ > 0 s.t. for all x with 0 < x−2 < δ, x
x−2 > M .

WLOG we may assume M > 1. Then set δ = 2
M−1 . For any x with 0 < x− 2 < δ = 2

M−1 , we
have

x < 2 +
2

M − 1
=

2M

M − 1

Thus Mx− x < 2M ⇒ M < x
x−2 .

(iii): Let x0 ∈ R be fixed, we need to show 1
f is continuous at x0. Because f(x0) 6= 0. By

continuity, there is δ′ > 0 s.t. for all x with |x− x0| < δ′, |f(x)| > |f(x0)|
2 > 0.

Let ε > 0. By continuity of f there is δ′′ > 0 s.t. for all x with |x− x0| < δ′′,

|f(x)− f(x0)| < ε
|f(x0)|2

2

Take δ = min(δ′, δ′′). For any x with |x− x0| < δ,

| 1

f(x)
− 1

f(x0)
| = |f(x)− f(x0)|

|f(x)f(x0)|
<

2

|f(x0)|2
|f(x)− f(x0)| < ε.

(iv): Please refer to Theorem 5.2.6 and 5.2.7 of Bartle and Sherbert’s Introduction to Real
Analysis.
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